Some properties of manifolds with contact metric structure
نویسندگان
چکیده
منابع مشابه
Low dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کاملNotes on some classes of 3-dimensional contact metric manifolds
A review of the geometry of 3-dimensional contact metric manifolds shows that generalized Sasakian manifolds and η-Einstein manifolds are deeply interrelated. For example, it is known that a 3-dimensional Sasakian manifold is η-Einstein. In this paper, we discuss the relationships between several special classes of 3-dimensional contact metric manifolds which are generalizations of 3-dimensiona...
متن کاملSymmetries of Contact Metric Manifolds
We study the Lie algebra of infinitesimal isometries on compact Sasakian and K–contact manifolds. On a Sasakian manifold which is not a space form or 3– Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K–contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automor...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولRicci solitons in contact metric manifolds
In N(k)-contact metric manifolds and/or (k, μ)-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with V pointwise collinear with the structure vector field ξ are studied. Mathematics Subject Classification: 53C15, 53C25, 53A30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1963
ISSN: 0040-8735
DOI: 10.2748/tmj/1178243868